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Total synthesis of (�)-clavosolide AI
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Abstract—The total synthesis of (�)-clavosolide A is achieved employing a radical-mediated route to build the substituted tetra-
hydropyran unit, a Yamaguchi reaction to construct the diolide aglycon and the Schmidt method for the final glycosidation step.
� 2006 Elsevier Ltd. All rights reserved.
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Clavosolides A–D were isolated from extracts of the
marine sponge Myriastra clavosa collected in the Philip-
pines.1 The symmetric structure of the 16-membered
core diolide ring in these molecules, with highly substi-
tuted tetrahydropyran units, disubstituted cyclopropyl
rings and permethylated xylose moieties, makes them
synthetically challenging targets.2–6 Syntheses of the
originally assigned structure of clavosolide A by us,2a

and earlier by Willis and co-workers,2b revealed that it
was actually an isomer of the natural product and Willis
and co-workers proposed a revised structure for clavo-
solide A based on NMR and molecular modelling.2b

Subsequently, a total synthesis of the revised structure
for clavosolide A was accomplished by Lee and
co-workers.3 Unfortunately, an error, which has been
corrected recently by Lee and co-workers,4 in the sign
of the optical rotation led them mistakenly to conclude
that the compound synthesized by them was the anti-
pode of the natural product. This error has been re-
vealed by Willis and co-workers,5 as well as by Smith
and Simov,6 who have synthesized the revised structure
and established that this is indeed the naturally occur-
ring (�)-clavosolide A. The clavosolides represent yet
another example of natural products whose structures
were first wrongly assigned, but corrected later by chem-
ical synthesis.7 In this communication, we describe our
synthesis of (�)-clavosolide A (1).

Our synthesis started with the tetrahydropyranyl chiral
alcohol 2 (Scheme 1), which was synthesized earlier by
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us2a applying a methodology developed for the synthesis
of highly substituted tetrahydropyrans by a Ti(III)-med-
iated opening of trisubstituted epoxy alcohols.8
Oxidation of 2 was followed by the nucleophilic addi-
tion of the lithium propynilide, generated from propyne
and LDA, to give propargylic alcohols 3 and 4 in an
85% overall yield with the former as the major product,
in a 2:1 ratio.2a The isomers could be separated easily by
standard silica gel column chromatography. Earlier we
carried out the reduction of 3 with Red-Al to provide
the corresponding E-allylic alcohol,2a which was sub-
jected to a modified Simmons–Smith cyclopropanation
reaction9 giving the syn product selectively. However,
the newly assigned structure of clavosolide A has an
anti-relationship between the C9–O and the cyclopro-
pane ring with (9S,10R,11R) and (9 0S,10 0R,11 0R) config-
urations. This necessitated the use of the 9R-
stereoisomer 4 to give the requisite (R,R)-cyclopropane

mailto:chakraborty@iict.res.in


O

Me

BnO

OTBDPS

OH O

Me

BnO

OTBDPS

OH

2 3

ref. 2a

O

Me

BnO

OTBDPS

OH

4

+

(2:1)

1. p-nitrobenzoic acid, Ph3P, DEAD
THF, 0 oC to rt, 30 min

2. K2CO3, MeOH, rt, 30 min
92%

4

Red-Al, Et2O,
0 oC to rt, 3 h

82% O

Me

BnO

OTBDPS

OH

5

Et2Zn. CH2I2, CH2Cl2,
–20oC to 0 oC, 4 h

96% O

Me

BnO

OTBDPS

OH

6

DMP, NaHCO3, CH2Cl2,
0 oC to rt, 20 min

O

Me

BnO

OTBDPS

O

7

Zn(BH4)2, THF, 0 oC, 8 h
80% from 6

O

Me

BnO

OTBDPS

OH

8

Scheme 1.
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ring, since the cyclopropanation reaction is predomi-
nantly syn-selective.10 It was envisaged that inversion
of the C9–OH would re-establish the S-configuration
in the product. In order to generate more of the requisite
propargylic alcohol 4, the major isomer 3 was subjected
to Mitsunobu inversion11 followed by benzoate depro-
tection under basic conditions to provide 4 in an 80%
overall yield from 2.

Red-Al reduction of 4 was followed by cyclopropana-
tion of the resulting E-allylic alcohol 5 to give the
expected syn-product 6 as the major isomer (de >96%)
in a 79% yield from 4. The stereochemistry of the major
product was assigned based on earlier reports.10 It now
remained to invert the C9-stereocentre; however,
Mitsunobu reaction failed to provide the inverted prod-
uct. Therefore, an oxidation–reduction sequence was
contemplated as there are many methods known for
diastereoselective hydride reduction of cyclopropyl
ketones.12

Oxidation of 6 with Dess–Martin periodinane (DMP)13

provided the 9-keto intermediate 7, which was subjected
to hydride reduction using various reagents such as
Zn(BH4)2, LAH, LiBH4, NaBH4, DIBAL-H, NaBH4,
CeCl3Æ7H2O and K-Selectride. The highest anti-selectiv-
ity was achieved with Zn(BH4)2 in THF at 0 �C, which
gave the required 9S-isomer 8 as the major product in
a 5:1 ratio and in an 80% overall yield. Surprisingly,
K-Selectride, known to be an excellent anti-selective
reducing reagent for such cyclopropyl ketones,12 gave
exclusively the syn-isomer here, which had misled us ear-
lier to wrongly assign the structure of the resulting prod-
uct while trying to predict the probable stereochemistry
of the natural product.2a
The final steps of the synthesis are shown in Scheme 2.
Silylation of the hydroxyl group of 8 furnished the
TES-protected intermediate, which was subjected to
benzyl ether deprotection to give the intermediate 9 in
81% yield. Next, a one-carbon extension by an oxida-
tion–olefination sequence furnished 10 in 75% yield.
Hydroboration of 10 gave, exclusively, a primary alco-
hol, which was oxidized to the corresponding acid 11
in two steps and 78% overall yield from 10. Esterifica-
tion of 11 with allyl bromide and K2CO3 followed by
acid-catalyzed desilylation furnished the hydroxy com-
ponent 12, ready to be coupled with acid 11, in 85%
yield. Following the Yamaguchi procedure,14 the mixed
anhydride obtained by reacting 11 with 2,4,6-trichloro-
benzoyl chloride was treated with alcohol 12 in the pres-
ence of DMAP to furnish the fully protected linear
dimer 13 in 85% yield. Acid-catalyzed desilylation of
13 was followed by Pd-catalyzed deallylation to give hy-
droxy acid 14 in 75% yield.

The stage was now set to carry out the crucial macro-
lactonization reaction. Following a reverse-addition
protocol, the mixed anhydride from 14 dissolved in tol-
uene, after evaporation of THF under reduced pressure,
was slowly added using a syringe pump over ca. 5 h to a
solution of DMAP in toluene (final concentration
10�3 M) at 80 �C to furnish the desired dilactone, which
on desilylation using TBAF and a catalytic amount of
acetic acid in THF gave the deprotected diolide aglycon
15 in 71% yield. A small amount of the cyclic tetramer
(in ca. 10:1 ratio) was also formed during the macrolact-
onization step, which could easily be separated by stan-
dard silica gel column chromatography.15 Schmidt
glycosidation16 of 15 with 2,3,4-tri-O-methyl-b-DD-xylo-
pyranosyl trichloroacetimidate 1617 following the
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14: R1 = H, R2 = H
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2,4,6-trichlorobenzoyl chloride, Et3N, THF, 
rt, 3 h, then 12, DMAP, toluene, rt, 1 h

85%

1. CSA, MeOH:CH2Cl2 (1:4), 0 °C, 10 min
2. Pd(PPh3)4, morpholine, THF, rt, 1 h
75%

1. 2,4,6-trichlorobenzoyl chloride, Et3N, THF, rt, 3 h, 
the mixed anhydride then added to DMAP, toluene,
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Scheme 2.
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method reported earlier by us2a furnished the desired
b,b-product 1 in a 21% isolated yield along with the
unwanted a,a- (21%) and a,b- (43%) isomers. The 1H
and 13C NMR spectra and optical rotation, [a]D �42.4
(c 0.125, CHCl3), of our synthetic product 118 matched
with those reported for the natural clavosolide A (liter-
ature [a]D �48.5 (c 1, CHCl3)).1a
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